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UNIFORM ERROR ESTIMATES FOR CERTAIN 
NARROW LAGRANGE FINITE ELEMENTS 

N. AL SHENK 

ABSTRACT. Error estimates of Dupont and Scott are used to derive uniform 
error estimates for Lagrange finite elements in JRn (n > 2) under the follow- 
ing conditions: (1) The elements can be arbitrarily narrow in any coordinate 
direction such that a sufficient number of interpolation points are grouped on 
lines parallel to that coordinate axis, and (2) the space of approximating func- 
tions FT in each element T must include the space of polynomials of degree 
< m - 1 for some m > 1 + n/2. If n is odd, this does not cover elements 
of lowest degree that are normally considered with the shape regularity require- 
ment that the ratio of their outer and inner diameters be bounded. For example, 
if n = 3, the usual requirement with shape regularity is that each FT contain 
all first-degree polynomials. The result of this paper requires that each FT 
contain all quadratic polynomials, and consequently does not apply to linear 
(Courant) elements in tetrahedrons or trilinear (tensor) elements in rectangular 
boxes. Counterexamples in these two cases are included. 

1. INTRODUCTION 

Most discussions of uniform a priori error estimates for finite element ap- 
proximations in JRn with n > 2 use the shape-regularity assumption that the 
ratios of the outer and inner diameters of the elements are bounded, where 
the outer diameter of an element is the diameter of the smallest disk or sphere 
containing it and its inner diameter is the diameter of the largest disk or sphere 
contained in it. For triangular elements in R2 this is equivalent to assuming 
that the angles in the triangles are bounded away from zero. I. Babuska and 
A. K. Aziz [1] showed that for certain Lagrange elements on triangles in R2, this 
condition is unnecessarily stringent. (We use the term Lagrange element for an 
approximation that is determined by values of the function being approximated 
at a finite number of points, in contrast with Hermite elements which also de- 
pend on the interpolated function's derivatives.) They showed that instead of 
requiring that none of the angles in the triangles be small, it suffices to require 
that none of them be large, i.e., that all angles be bounded away from oz. P. 
Jamet [2] obtained uniform estimates for Lagrange elements under the assump- 
tions that (i) the directions of the sides of the elements are not arbitrarily close 
to being parallel to any hyperplane and (ii) the space of approximating func- 
tions in each element include all polynomials of degree k with k > n/2. The 
last restriction eliminates linear, bilinear, and trilinear elements in R2 and R3. 
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Later, E. Barnhill and J. A. Gregory [3, 4] derived uniform estimates for linear 
elements on triangles with angles bounded away from 7r, and M. H. Schultz [5, 
pp. 19-20] obtained such results for certain Lagrange elements on arbitrarily 
narrow rectangles. Also, L. Dechevski and E. Quak [6] have derived uniform 
LP estimates for arbitrarily narrow elements in Rn with n < p. 

In this paper we use error estimates of Dupont and Scott [7] for approxima- 
tions by averaged Taylor polynomials to generalize these results to other types 
of Lagrange elements in JRn for n > 2. The necessary results from [7] require 
only Schwarz inequalities and changes of variables in multiple integrals. (See 
also the expository article [8]). We will show that, in most cases, uniform esti- 
mates can be obtained for elements that are arbitrarily narrow in any coordinate 
direction such that a sufficient number of interpolation points are grouped on 
lines parallel to that coordinate axis, and for the images of such elements under 
nonsingular linear transformations such that the ratios of their greatest and least 
singular values are bounded. The main result (Theorem 1) applies to all types 
of elements covered by standard results under a shape-regularity requirement, 
with one important exception. It does not apply to elements of the lowest possi- 
ble degree in spaces of odd dimension n . The results based on shape-regularity 
require that the space of approximating functions FT in each element T in- 
clude the space Pm-i of polynomials of degree < m - 1 for some m > n/2, 
while Theorem 1 here requires that FT include Pm_- for some m > 1 + n/2. 
If n is even, these are equivalent conditions. If n is odd, however, the latter 
condition is stronger. For n = 3, the requirement with shape-regularity is that 
each FT contain all first-degree polynomials and Theorem 1 here requires that 
each FT contain all quadratic polynomials. Consequently, Theorem 1 does not 
apply to linear (Courant) elements in tetrahedrons or trilinear-(tensor) elements 
in rectangular boxes, and we include counterexamples to Theorem 1 in these 
two cases. 

2. THE FINITE ELEMENTS 

We assume that the reference element To is a closed polygon in JRn with 
n = 2, or a closed polyhedron in JRn with n > 3, and that the domain Q C JRn 
under consideration is a polygon or polyhedron whose closure is paved by a 
finite number of images T of To under affine transformations YT(X) = Al x + 
bT, where YT and x are column vectors and for each T, AT is an n x n 
nonsingular matrix, Al is its transpose, and bT is a constant vector. Here we 
view the transformation from the reference element To to the general element 
T as the composition of three transformations by writing Al in the form 

( 1 ) 4=hAt TStDT, 

where hT is a positive constant, ST is an arbitrary real, nonsingular n x n 
matrix, and DT is a real, diagonal n x n matrix whose diagonal elements drr 
satisfy the following condition: 

I. There is a subset R of {1, 2, ..., n} such that 

(2) 0 < drr < 1 for r E R and drr = 1 for r ? R. 

The factor hT in (1) represents a uniform contraction or expansion in all 
directions, the matrix DT represents contractions parallel to the xr-axes for 
r E R, and ST can involve contractions parallel to the xr-axes for r V R or 
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other nonsingular linear transformations. We will obtain, for a fixed reference 
element, estimates involving hT and the singular values of ST that are inde- 
pendent of DT and hence uniform for the images under hTS' of elements that 
are arbitrarily narrow in the xr-directions for r E R. 

We also make the following assumptions. Of these, it is Condition VIII that 
allows for narrow elements. 

II. The reference element To contains an open convex set Uo with the prop- 
erty that To is star-shaped with respect to all points in Uo. 

III. The finite-dimensional space FO of functions 0(x) that are used as 
approximations in the reference element To consists of functions in C(TO) 
whose first-order distribution derivatives in the interior of To are in L2(TO) and 
includes all polynomials of degree < m - 1 , where m is an integer > 1 + n/2. 

IV. The interpolation data in To consist of the values {u(pj)} of the inter- 
polated function at N points {pj} in To, with N the dimension of FO and 
such that 

(3) BOU = [u(p1), U(P2), ..., u(PN): FO _R 

is an isomorphism. The interpolant of u E Cm(To) is the unique function us 
in FO such that BOu, = BOu. 

V. The space FT of approximating functions q,(y) in a general element T 
is obtained from FO by the affine mapping YT(X); i.e., FT = {(Y) M(X) = 

VI(YT(X)) E FO}- 
VI. The interpolation data BTU in the general element T are obtained from 

the data in To by the mapping YT(X): 

(4) BTU = BOU 

with u(x) = U(YT(X)) for u(y) E Cm(T). This means that 

BTU = [u(ql), u(q2), * * *, u(qN)] 

with qj = YT(Pj). The interpolant of u(y) E Cm(T) is the unique function 
us(y) in FT such that BTUI = BTU - 

VII. The interpolation data is such that the interpolations of a function u E 
Cm (Q) in the various elements combine to form a function ui E C(Q)). 

VIII. For each interpolating point pj in To and each r E R, let qjr(X) be 
the function in FO that equals 1 at all interpolating points on the line through 

pj parallel to the the xr-axis and equals 0 at all other interpolating points. 
Then qjr(X) is independent of xr. 

In the case of n = 2, Condition VIII is satisfied if FO contains the space 
Pm-i of all polynomials of degree < m - 1 and if, for each r E R, the inter- 
polation points {pj} are grouped on m lines parallel to the xr-axis. This is a 
consequence of the fact that a polynomial of degree < m - 1 in one variable 
can be chosen to have arbitrary values at m points. For example, Figures 1 
and 2 (next page) represent triangular elements in the isosceles right triangle To 
with vertices Pi = (0, 0), P2 = (1, 0), and P3 = (0, 1). Both types of ele- 
ments satisfy Condition VIII with R = {1, 2}. In the case of Figure 1, which 
represents linear (Courant) elements determined by values of the functions at 
the three vertices, m = 2 and the interpolation points are on two lines parallel 
to each coordinate axis. Here, 1 can be in R because the linear function 1 -x2 
that is 1 at Pi and P2 and is 0 at P3 and the linear function x2 that is 1 
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at p3 and is 0 at Pi and P2 are both independent of xl. Similarly, 2 can be 
in R in this case. For cubic elements determined by the ten points in Figure 2, 
m = 4 and 1 and 2 can be in R since the ten points are grouped on four 
horizontal and four vertical lines. 

The situation is different for linear elements if To is the isosceles triangle 
with vertices Pi = (0, 0), P2 = (2, 0), and p3 = (1, 1) in Figure 3. In this 
case, 1 can be in R because PI , P2, and p3 are on two horizontal lines. The 
function x2 that is 1 at p3 and is 0 at Pi and P2 and the function 1 -x2 
that is 1 at Pi and P2 and is 0 at p3 are both independent of xl . However, 
2 cannot be in R because the linear function x2 that is 1 at p3 and 0 at 
Pi and P2 is not independent of x2. The interpolating points are not on two 
vertical lines. These examples reflect the results of Babuska and Aziz because 
compressing the triangle of Figure 3 in the x2-direction would violate their 
maximum angle condition, while compressing this triangle in the xl-direction 
or compressing the triangle in Figure 1 and 2 in the xl - or x2-direction would 
not. 

To deal with the case of general n > 2 and a fixed r, we let 

x = (X, ...,X r- xr+l xn) 

denote the point in Rn- 1 obtained by removing xr from x = (x 1, x2 n) 
and use (x, xr) as alternate notation for x. Suppose Pm-1 is the space of 
polynomials of degree < m - 1 in x and N is its dimension. Then Condition 
VIII is satisfied if Fo contains Pmi, and the interpolation points {xj} are 
grouped on N lines x = c,, v = 1, 2, ..., N, such that a polynomial in 
PmI can be assigned arbitrary values at the points {c >} E n -l I 

3. NORMS AND SEMINORMS 

For a nonnegative integer j and a function u with continuous derivatives 
of order j at x, 

(5) [u(x)]x = J (a)u(x)2} 

denotes the t2-norm in Rni' of the x-derivatives of u of order j at x, with the 
mixed partial derivatives obtained by different orders of differentiation counted 
separately. Here the multi-index a = (a 1, a2, ... , an) is an n-tuple of non- 
negative integers, Ija =a1+2 + ** *+at a!=!a2! an! and 

Oa AR (O lC, l 

t aX 2 (0X 1 al ... 
(axn )an 
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For j > 0, 

(6) IUITj = {j [U(X)]2fj dx} 

is the seminorm (a norm if j = 0) formed by the L2-norms of the j th deriva- 
tives of u in T, and 

(7) IIUIIT,k = {k }jl 

is a norm in L2(T) for k = 0 and in the Sobolev space H1(T) for k = 1. 

4. THE MAIN RESULT 

Theorem 1. Suppose that the reference data-the reference element To, its subset 
Uo, the integer m, the space of approximating functions Fo, and the interpola- 
tion points {pj}-satisfy hypotheses (II) through (VIII) above. 

Let hT be a positive constant, ST a nonsingular n x n matrix, DT an n x n 
diagonal matrix satisfying hypothesis (I), and bT a constant vector in JRn . Let 
F be the image of To under the mapping YT = hTS DTX + bT 

Then there is a constant C, that depends only on the reference data in To, 
such that for all U E Cm( T), 

(8) Iu-uIU,2 O + (hTAT)21u-uI_,121 < C2 (uTATI)2 |U1m2 

where u, is the interpolant of u in T and AT and AT are the least and greatest 
singular values of ST 

If AT/AT is bounded for all elements T under consideration, then the fac- 
tors AT and AT can be dropped from (8)-with a different constant C. 

Throughout this discussion, C denotes various constants that depend only 
on the reference data in To. By the standard error estimates for To, there is a 
constant C such that 

Iu -UII1 O + IU - Ui12 1 < C2 IU12,m for u E Cm(To). 

We rewrite this, using only L2-norms, as 

(9) | u +Eau-usZ n O 2 C E T! I(0 a 

Let T1 be the image of To under the mapping z = Dx, which compresses 
the xr-directions for r E R. Under this change of variables, 

(I 0) ~ _ z' = djj (10) 0aj=a0Zja,x- Ox' Oz' 

so that (9) becomes, after cancelling the Jacobian, det(D)- , 

lu~ ~~1 IT,o+E|djj 57- (u U)I C Ea d(0)u Iu-uiI 0 Z zujy(u-uI) TO ?C c - d&yzy,u T,0 
j=1 IaI=m 
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with da = d ... d, Since Idjjl < 1 for j = 1, 2, ...,n, we have Idal < 1 
and 

2 
n ~ ~~~2 M!(k)a 2 

1u - uIJT 0O + E |djj aJ(u - uj)| < C2 u !|(0) 1 
j=1 T1,O Ia=m a! z Ti,o 

or 

(11) ~~ ~~~~~~n 2 
u(uiJ~+ Z) 1 djj ((u-uI) |,< C2uT Ui 

2 

1=1 

for u E CM(T1). 
Estimate (1 1) by itself will not give Theorem 1 because Idrrl can be arbitrarily 

small for r E R. We also need the following result. 

Lemma 1. There is a constant C, depending only on the reference data in To, 
such that for u E Cm(To) and r e R, 

(12) 
_Xr__ I) To O < 2|Xr Oxr T0,0 Oxr ~~To, m-1I 

Suppose that Lemma 1 has been established. We rewrite (12) with L2-norms 
as 

-a- Us2 < (m - 1)! )a a 
u 2 

0Xr(uuI) To 0 a=m-1 a! O x J&Xr To, 0 

Then the change of variables z = Dx yields 

|drr a ru (- u) < O (m 1! -d adrr (0)fzrTO 

We cancel Idrr12 and use the estimate Idal < 1 to obtain for r E R, 

aUuu)2 Z (m -l)! (a aOU 2 

,Zr ( uj) T1,0 
< C a! Ik(Yz} Ozr T1,0 

(13) 
al=m- / 

< C2 m ( ) c2l 12 ?C2Z~~7 - 5-yy u T1,O IT1, m 

jal=m 

Deleting the terms in the sum of (1 1) with j = r E R, for which drr < 1, 
and replacing them by (13) yields 

| U- Uj| 12 + 1: 
a 

(U _UI)| < c2lU12 

or 
u - uij 

2 + IU - uI121 < C2IUI2im 

Making the change of variables y = hTSTz + bT yields (8) (see Lemma 3 of 
[8]). Hence we can establish Theorem 1 by proving Lemma 1. 
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5. PROOF OF LEMMA 1 

For u E Cm(To), let Qmu be the averaged Taylor polynomial approximation 
of u of degree m - 1 defined in equation (3.1) of [7] with Q = To and 
B = UO. We will estimate 19 (u - us) for r E R by estimating ,0 (u - Qmu) 
and ,k(Qmu - us) . Equation (3.3) and the last set of inequalities on p. 38 of 

[7] with lal = 0, j =0, u replaced by OU , and m replaced by m - 1 give 

(9 X r IgOXr OX (14) Tor(UQmU) T o = OXr To 0 

=Rm~-1_ Ott<c 
9 

= O xr |T0, - < OCXr T0,m-l 

This is the estimate we need on ,9 (u - Qmu). 
Since Qmu is a polynomial of degree < m - 1, it and uI - Qmu are in Fo 

by Condition III. We begin our study of us - Qm by looking at functions in 
Fo . 

We suppose that r e R is fixed. We let x = c>,v = 1 2, 3, ... N 
be the lines parallel to the xr-axis containing the intertolating points {pj} in 
To, and let (c>, tvl) for ,u = 1, 2, ..., M. be the interpolating points on 
x = c. Label the points so that tvI < tvU for ,u > 1. Then (c>,, tvg) for 
, = 1, 2, ... , Mv and v = 1, 2, ..., N are all the interpolating points. The 
next lemma uses Condition VIII on the geometry of those points. 

Lemma 2. There is a constant C, depending only on the reference data, such 
that for X E Fo and r E R, 

(15" f Oq$ ~2 
NM, (15) Jo (X) dx < C2Z ct c t 

v=l y=2 

where the inner sum is taken to be zero if Mv = 1. 

Proof. For each interpolation point (c>, tvl), let Xv,,(x) be the function in 
Fo that equals 1 at (c>, tv#) and equals zero at the other interpolation points. 
Then 

N M, 

(16) +(X) = E E CV tV,)xV,1(X). 
v=l ji=l 

By Hypothesis VIII, the functions Z,=> Xv#(x) for v = 1, 2, ..., N are 
independent of Xr. Consequently, their xr-derivatives are zero and 

,0xr X )= _E X(x if Mv = I M, 

~-rXv I(x) ={ZOX (X) if Mv 2}=I Zi- 0~XVhi(x) 
Oxr~~~~gx = 
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where the sum is taken to be zero if Mi = 1 . Using this with (16) gives 

__ ~ M 

aXr (X) o t(ev , tV'u)Z9XrV'U(X) 
V=1 L=1 

=Z {- 0(C, tv 1) Z I (X) + + W , tvU) LXryt(x) } 
i=1 ,=2 

= E - S6Cv ctvI) X 0 rX(x) + E S (v 
, 

tvu) X,0 X(x)} 
V= 1 #=2 ,u=2 

N Mv a 
= E [O(C-, tvu) - O(CV t1 tl)1aXrX%>(X) 1 
v=1 #=2 

and then with a Schwarz inequality, 

Ob 2 NMv (9)( t ~ mv 2 
| (X)| ?' Z Z Z(C tv2_-xC tvl)1 2 e rX E E(X) 

v=1 #=2 v=1 #=2 

This yields (15) and establishes Lemma 2 since, by Condition III, I 
Xv#(x) 

are fixed functions in L2(To). 5 

To complete the proof of Lemma 1, we use (15) with q = u, - Qm u. Since 
u = u, at the interpolation points (h,V t/,) and (ct,, tv I) and (ct, tv,) are on 
the same line parallel to the xr-axis , we obtain 

JIT 1r(uI QmU)(X) dx 

NMv 
< C2U _ -Qm u)(c, tv,)-(u-_Qm U)( tv 1) 12l) 

v=1 g=2 

N MV 2 

( 7) = c2 E E I 
(U _ QmU) (c,tv#) _(U _ QmU) ( tv,) (17) =c2ZZ c 

v=1 #=2 

=c2 E E S J Xr (u -Qmu) (eV t) dt| 

z 2E JL'rVI X (U-Qmu)(ev ,t) dt 2 
v=1 /=2 

We use the following lemma to estimate the integrals on the right of (17). 

Lemma 3. There is a constant C such that for v = 1,2,.. 2 , N, ,u = 1, 2,. ... 
M,,, and u E Cm(TO), 

(18) 
f 

J ir (u - Qmu)(Cvi, t) dtl < C| 
u 

I 
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Proof. We are assuming that m > 1 + n/2 . For m > + n/2 the first inequality 
in the proof of Theorem 4.2 in [7] with u replaced by ax, = 0 and m 
replaced by m - 1 gives for (ct,, t) E To, 

o O~ ~ ~~~~u ___ u 
Xr (u -Qmu)(Cu, t) = | t)| < OXr9 Tm- 

Integrating this inequality yields (18). 
We are left with the case of m = 1 + n/2 (and even n ), for which m - I-n = 

-n/2. The first inequality at the bottom of p. 40 of [7] yields for x E To, with 
Da =O/lxr, jai = 1, and 4 inplace of y, 

Xa (u - Qmu)(x) 

(19) ? cJ Ix i m-l-n 
a 

au- k( )%0r(4') d4 

? Cf IX-4 l/2 [Xr(4U)]m dC. 

For x = (c , t) and 4 = (4C,4r), set a = Icv _ 
4l, a = (t- _r)la, and 

dt = ada. We have assumed that tv, <t, for ,u> 1. Hence, for 4' &', 

t|u IX_t-n/2 dt = 2 r (_r)2r-n4 

a | [2 + (t _ r)2] dt 

(20) = a-n2 J [1+( t-dt-n/4 

a1-n/2 fa(t r)/an 2-/4 da 
(tvl -Cr)la 
Id /a 

< a1-n/2 [1 + a2]-n/4 da = K(a) = K(Ic - 

where d1 is the outer diameter of To and K(a) is defined by the last equations. 
For n=2 and O<a<dl, 

K(a) = | [1+ 2]-ll2 du = 2 [ln di+ d -Ilna] 

< C(1 + Ilnal), 

while for n > 4, 

K(a) < a 1 -n/2 j[1 + a2]-n4 da < Ca I -n/2. 

Hence for n = 2, 

(21a) J K(lJ4 - '1)2d4 < CJ (1 + I ln Icv - ;)I)2 d4 < C 
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and for even n > 4 

(21b) I K(Ic - d < Cj -C d; < C. 

The integrals on the right of (21a) and (21b) are bounded because their inte- 
grands have bounded integrals over the intersections of To with the (n - 1)- 
dimensional planes xr = c. Hence, (19) with x = (c>, t), (20), and (21a,b) 
yield 

| (u - Q' u-Qmu) (C4, t) dt 

VI T 8 41 M1IV 1; < IT r(C) ['jm j4ix -1 dt d 

J[ 
C2 

4 ?CO <C|K(lcv41 d | [aXr (C)2 _ d; < aX |8rT _ 

and this gives Lemma 3. c 

Estimates (17) and (18) imply 

(22) :x(U ) rTi = { IT |Q aXr(UI-QmU)(X) dx} 

< clUI 
OgXr T0,m_1 

Finally, (14) and (22) with the triangle inequality give Lemma 1 to complete 
the proof of Theorem 1. 

6. COUNTEREXAMPLES 

We close by using a standard counterexample to the false Sobolev-type in- 
equality I y/ (0) I < C I IIwR2 for functions in R2 to construct counterexamples 
to Theorem 1 (i) for To the tetrahedron in R3 with vertices Pi = (0, 0, 0), 
P2 = (1, , O), p3 = (0, 1, 0), p4 = (0, 0, 1) and Fo the space of linear func- 
tions 0 = co + clxl + c2x2+ C3X3; and (ii) for To the cube 0 < xl, x2 x3< 1 
with Fo the space of trilinear functions spanned by the eight functions xIx2x3, 
(1-X1)X2X3, X1(1-X2)X3, (1_X1)(1-X2)X3, X1X2(1-X3), (1_X1)X2(1_X3), 
xI(1 -_x2)(1 -x2), and (1 - x1)( - x2)(1 - x3). 

We set R = {3} and write 

1 0 0 
DT= 0 1 0 

Lo o0 J 
with 0 < u < 1, so that d11 = 1, d22 = 1, and d33 = Y. We take hT = 1 and 
bT = O and let ST be the identity matrix. 

In the case of a tetrahedron To, its image under the mapping YT = DTX is 
the tetrahedron Ty with vertices qI = (0, 0, 0), q2 = (1, 0, 0), q3 = (O, 1, 0) 
and q4 = (0, 0, 4). In the case of a cube, the image of To is the box QI: 
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0 < x1 < 1, 0 < x2 < 1 0 < X3 < u. In both cases all of the hypotheses of 
Theorem 1 are valid except the requirement in Condition III that Fo include 
all quadratic polynomials. 

We consider the case of the tetrahedron first. For u E C2 (TY), u, is the 
linear function that has the same values as u at q1, q2, q3, q4. If Theorem 1 
were valid in this case, there would be a constant C, independent of ,u with 
O < ,u < 1, such that 

(23) IIU-UIIITP I < CIUITP,2 
for all u E C2 (TY). We will prove there is no such constant by finding for each 
Y > 0 a ,u with 0 < ,u < 1 and a function u E Coo (3) such that 

(24) IIU-UIIITP 1 > YIUITI,2 
Let g 

- (1, 42) be the Fourier transform variable in R2 and write p = 

Let YR(xl, x2) be the function in Coo(R2) whose Fourier transform is the 
radially symmetric function 

{ 1 for e<p<R, 
F =V/R P2 in p 

0 otherwise, 
where e is the base of the natural logarithm and R is a constant > e to be 
chosen later. Then 

YIR(X, X2) = 2 ,' ei(x'II+X2,2) F(y/R)(,) dE, 

so that 

(25) VR (0, 0) = 1 p ln p dp = ln(ln R). 

Also, 

1 + p 2 
(I2R 112?2,I 1 IF(yIR)(g)I2(1 + I1I2) d, = 27rj p dp 

1 
7r7r 1 

( p(lnp)2 dp 47 [1 - lnR] < 47r 

and 

7 IRI2 =12 IF(/R)G()12(IgI12 + kg212)2 dX = 27r P p dp 

<R2. 
< 271 pdp < 7cR. 

Define 

(28) U(xIx 2 x3) X R (xx 2). 

Then u(x1, x2, 0) = 0 for all (x 1, x2) and u(O, 0, ,u) =/4t yR(O, 0), so the 
linear interpolation of u in the tetrahedron Ty is 

3 3 
(29) UI(x1 x2 , X3) = _ I R(O, ). 
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Since the xI- and x2-derivatives of u, are zero and its x3-derivative is 
VR(O, 0)/v/f, we have 

IIuIIA12 = -j [(x3)2 + 1] VIR(O, 0)12 dx 

> R IR(O, 0)12 dx = -IYR(O, 0)| [Volume of T'u] 

II VIR(o 0) 12. 
Combining this estimate with (25) gives 

(30) 1UI1 1 v/6- i n(ln R) . 

Also, for x E T# we have Ix31 < 1 and 

IU(X)12 + IVU(X)i2 = 1 [Ix3y,R(xl, X2)12 + IX3VV2R(x1, X2)12 + 2VR(x1, X2)I2] 
'U 

< 2u[Iu'/R(x, x2)12 + IV,7qR(X1, X2)12]. 
'U 

Let A denote the isosceles triangle that is the base of T# for 0 < ,u < 1 . Then 
with (26) we obtain 

IIUI12 <1 2 I [ J (X I,p X2)12 + IVR(X , X2)12 ] dx 

(31) - |AI1'U(l xI _ x2)[ I VR(X1 , X2)12 + IVV/R(x ,X2)12] dX dX2 

< 2j[IvIR(X1I X2)12 + IV,VIR(X1 , X2)12] dx1dx2 

* 2 
1 
1VR|2 11 

2 < 871, 
so that by (30) 

(32) IIU - UIIIPT,1 > IIUIIITP,I 
- 

IIUIITP,1 > 6V1n(lnR)- 

and -*U0- UI 1 ? ? uniformly for 0 <,u < 1 as R-oc. 

On the other hand, with Di denoting " and x = (xI, x2), we have 

IU1IT2 I {ID'D1uI2 + ID2D2UI2 + ID3D3UI2 

+ 2ID'D2uI2 + 2ID'D3uI2 + 21D2D3uI2} dx 

= fTP {1Ix3D1D1 V/R I2 + x3D2D2 2v/Ri2 + 2IX 2 D R 1R 

+ 2ID1 VR 12 + 2 1D2 VR 12} dx 

(33) 1 jj /( _l1X2) {(X3)2[VR (.X)]2 +12lV Kf2} dX 

= ij [ 3(X3) 3 [ V/R (X)] x2 + 2x3IVV/r 2 1 V dx1 (x)2 I dx 

? -{ 38 R'U3/A 2 #+121|IRlA11} 'U 
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With (26) and (27), this estimate yields 

(34) IUITP,2 < 27r1u2R2+87r 

and IU|TI 2 < 6 for fixed R and sufficiently small ,u. 
Given Y > 0, pick R > e such that v?6ln(InR) - 8- > 6Y and then 

pick ,u with 0 < ,u < 1 such that IriU2R2 + 87r < 6. Then by (32) and (34), 

I|u - uIIITP 1 > 6Y > YIUITP2. 

Inequality (24) is satisfied, so there is no a priori estimate of the form (23) 
having the same constant C for all tetrahedrons Ty with 0 < ,u < 1 . 

For the case of the rectangular boxes Q/, we again define u(x) by (28). 
Then for 0 < ,u < 1, 

4 4 

U1(X) = U(J)(X) = 1 E Pj(X)R(qj), 
1=1 1-1j= 

where P1(x) = (1 -x1)(1 -x2)X3, P2(X) = X1(1 -X2)X3, P3 = (1 -X1)X2X3, 
P4(X) = X1X2x3 qi = (O, O), q2 = (1, O), q3 = (O, 1), and q4 = (1, 1). 

Short calculations yield for j = 1, ..., 4, 

IIu(j)112 I j = , (qj) 1 0pj 112 
(35) 1 

= !UIVR(qj)12( 273 + 9 U) = IV|R(qj)12( #2 + 9). 

Equations (35) and (25) imply 

(36) UII(1)IIQ 12 > WI I iR(O, 0)12 = [[ln(lnR)]2, 
while for j = 2, 3, 4 and 0< ,u < 1, 

(37) | | U, jIIQu,1 = IY'R(qj)I 2! < 

By the definition of VR, 

1 ,R 1 7 ip c 
y'R(q2) = YIR(i, 0) e pn ecsO dO dp, 

while yR(q3) and yR(q4) are given by this formula with cos6 replaced by 
sin 0 and cos 0 + sin 0 = V'2sin(O + 7r/4), respectively. We have 

2n 2n 

]eiPcos do = eiPsinO dO = 27rJo(p), 

with Jo the Bessel function of the first kind and order zero. (See any discussion 
of Bessel functions, such as M. Abramowitz and I. A. Stegun [9, pp. 360 and 
364].) Moreover, there is a constant k such that for p > e, 

IJo(p)l < k and IJo(v2p)l < k 
V-v/li- 
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so that for j = 2, 3, 4, 

IR(j)l ,) p3/?n1p dp 

< k p 3/2 dp < - < 2k. 

With (37) we obtain for j = 2, 3, 4, 

u|IU() |IA1< 2k, 

which, with (36), gives 
4 

(38) IIUIIIQP I > 
IIU? IIQP,1 ZIIUIJIIQ, 

> Iln(In R) -6k. 

On the other hand, calculations (31) and (33) carried out for QI in place of 
Ty give with (26) and (27) 

(39) |IUIIQ,. 1 < V2 1 VRIIR2, 1 < V'8fi 

and 

(40) IUIQ,. ,2 ' I/3 |/RR2,2 + 211 IR|R 11 22 A/7r2R + 

Given Y > 0, we pick R > e such that I ln(lnR) - 6k - V' > 6Y and 

then pick ,u so that 7rji2R2 + 8r < 6. Then, 

||U - ujIIQ,, I > lluIIIQ,,, Ij-|uj1Q,' I > 3 In(InR) - 6k - v/fi7 > 6Y > YUQ 

and, consequently, there is no constant C such that 

IIU - UIIIQI" 1 ' CIUIQ,112 

for all u e C2(Q') and 0 <,u < 1. 
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